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HABITAT COVARIATES FOR STANDARDIZING LONGLINE CPUE:
AN EXAMPLE WITH BLUE MARLIN

C.P. Goodyeaf* M. Schirripa? F. Forrestaf M. Laurettd

SUMMARY

Species distributiomodels(SDM)integratemultiple habitat features tpredict spatiotemporal
patterns of population relative abundance. Wappropriately scaled, theredictionsconstitute

a continuous numerical variable suitable for inclusion as a covariate in analyses intemded
standardize longline CPUHHere weevaluate methods to incorporaseich datainto CPUE
standardizationsising simulated longline catcheshfie marlin Makaira nigricang patterned
after either US or Japanese fishingHabitat relative densitiegH) were obtained frona SDM,
andahabitat coefficienfor each sewvasestimated from Hisinghook depths of individual gears.
StandardizationsisedGLMsfitted to suites of covariatéacluding either a continuous synthetic
habitatvariable or traditional spatial and temporal factor@rea, month}o represent habitat.
Overall, SDM-derived numerical variables were superior to traditional habitat factors
However the results for the UBased data were mixedresumably becaussd better statistical
balancein the habitat factors The resultsalso showthat temperatureshould beuseful as a
continuous numericovariatefor standardizingblue marlinCPUE

RESUME

Les modeles de distribution des especes (SDM) integrent de multiples caractéristiques de
I'habitat pour prédire les schémas spatiotemporels de I'abondance relative de la population.
Lorsqu'elles sont mises a I'échelle de maniére appropriée, les prédictions constituent une
variable numérique continue pouvant étre incluse comme covariableetaasdlyses visant a
standardiser la CPUE palangriére. Nous évaluons ici des méthodes pour incorporer de telles
données dans des standardisations de la CPUE en utilisant des captures palangriéres simulées
de makaire bleuMakaira nigricanscalquées sur lpéche américaine ou japonaise. Les densités
relatives de I'nabitat (H) ont été obtenues a partir d'un SDM, et un coefficient d'habitat pour
chaque jeu a été estimé a partir de H en utilisant la profondeur des hamecons de chaque engin.
Les standardisationatilisaient des GLM ajustés a des suites de covariables incluant soit une
variable d'habitat synthétique continue, soit des facteurs spatiaux et temporels traditionnels
(zone, mois) pour représenter I'habitat. Dans I'ensemble, les variables numériguéssiée

SDM étaient supérieures aux facteurs traditionnels de I'habitat. Cependant, les résultats des
données basées sur les Etdlisis étaient mitigés, vraisemblablement en raison d'un meilleur
équilibre statistique des facteurs de I'habitat. Les rémultmontrent également que la
température devrait étre utile en tant que covariable numérique continue pour standardiser les
CPUE de makaire bleu.

RESUMEN

Los modelos de distribucion de especies (SDM) integran mdultiples caracteristicas del habitat
para predecir patrones espaciotemporales de la abundancia relativa de la poblacién. Cuando
estan adecuadamente escalados, las predicciones constituyen una variable numérica continua
adecuada para ser incluida como covariable en andlisis para estandarizar la GRUE
palangre. Aqui se evaldan métodos para incorporar dichos datos en las estandarizaciones de
CPUE utilizando capturas de palangre simuladas de aguja &#akdira nigricanspara las

que se ha establecido un patron de acuerdo con la pesca japonesadouegiense. Se
obtuvieron densidades relativas del habitat (H) de un SDM, y se estim6 un coeficiente del habitat
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para cada lance a partir de H utlizando profundidades de anzuelo de cada arte. Las
estandarizaciones utilizaron GLM ajustados a conjuntosal@riables que incluian bien una
variable de habitat sintético continua o los tradicionales factores espaciales y temporales (area,
mes) para representar el habitat. En total, las variables numéricas derivadas de SDM eran
superiores a los factores de htgii tradicionales. Sin embargo, los resultados para datos
basados en Estados Unidos eran mezclados, presumiblemente a causa de un mejor equilibrio
estadistico en los factores de habitat. Los resultados muestran también que la temperatura
deberia ser utilamo covariable numérica continua para estandarizar la CPUE de la aguja azul.

KEYWORDS

Bluemarlin, Longline,Catchability, Gear coefficient, Habitat coefficieBtock assessment,
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1. Introduction

In 2015 he ICCAT Working Group on Stock Assessment Methodgted an effort to study longline CPUE
standardization methods using simulated ¢&ateon2016).Goodyear et al. (201 Modeleccatchabilityasa joint
function d ahabitatcoefficient (v) and an essential gear eff¢kt. The method uses a species distribution model
(SDM) to quantify habitatelative densitiesH) where a longline isleployed. The SDMisesenvironmental
variables and species habitat utilizatatterndo estimate species relative abundafte habitat coefficients
estimatedrom H usingprobability distributiors for depths fished by the hookBoth w andH could be used as
covariates in analgs of catch rates to estimate abundance trenel® We test the methading data simulations
patterned after the US and Japanese longline fisheries in the Atlanttom@upare theelative errors ofLM
standardizationesultsto those derived withlternative model covariat@scluding traditional fators for area and
intra-annual habitat variability

2. Background

Goodyeaket al (2017 separatedhe catchabilityof a single hooKr] ) into two factors 1) a gear effedt, and 2)
a habitaeffect H, due variationsn densitycaused by variations in features of the environment:

n O h P

where:

1 = the catchability coefficient for the hook,

k = gear coefficient, and

H:, = the average habitat around the hook.

Since catch is an integer resulting from a series of probabilistic encodiotergopulatiorN it is:
6 e OGS C

Thehabitat coefficienty, is the average dft, , for all hooks on a longline set
0 "Oh AT A o

n Qm T

The habitat coefficienfw) is the part of the catchabilitpf a longline sethat varies in time and spad@iven
sufficient data the values wofcan be estimated independent of catch.
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The essential gear effed) (s a constant that accounts for features affecting catch by the gear that do not include

the availability of fish in the vicinity of a hook. Features of longlines that dffieciudeeverything that does not
affect the density of fish in the water surrounding the hdoksontrast tow, it cannot be estimated independent
of catch.

3. Method

This study evaluates the performancehaf habitat coefficient as a covariate &M by comparing results of
statistical modeling tdtrued values known from simulatioand with several alternative covariatéhe process
involvesseverasteps

a) Simulaepopul ation trends to serve as the Atrueo
b) Esimate the relative distributigof blue marlin in time and spagéth a species distribution model

c) Assemble a time series of longline effsirnilar to real fishées

d) Simulate time series of longline catches

e) Construct the coefficientnd create inputles fort he GL Mo s

f) Process the GLM

g) Compare GLMresultsto nown FfAtrued values.

3.1 Population time series

To ersure the trends would be biologically reasonabie populatoau s ed f or t he ftrueo
from a fisheries simulatiomodel (FSIM, Goodyear 2004)his approach preserves the option for including the
standardizations in a larger evaluation of the whole assessment pideessodelcan compute size and age

frequencies of the population and catch by sex. It also providesmhvalues of MSY and related statistics that

account for tends in selectivities, etoc.documenthe relevant benchmarks to compare with assessment model

results.Two alternativegpopulation trajectoriemitended to encompassange of reasonable possibilitiegre
produced They share all biological features except thagBfor the larger population is 3.2 times greater than
for the smaller populatiorChe modelssumedhe fishery exhibitednife-edged, agdased selectivityith full
recruitment to the fishergit age 1 Growth wassexually dimorphic wittparameters used previous analyses
(eg., Goodyear 2015)Natural mortalityin the fishable populationvas constant aZ=0.1 fa both sexes.
Recruitment was governed byBevertonHolt stockrecruit functionwith steepnessqual t00.67 and without
stochastic variabilityFishing mortality was set to reprodute pattern apparent in the ICCAT Task | data from
1956 to 201GFigure 1). Onealternative assumeadSY was withinthe range of observed catchesich resulted

in a trajectory similar tahe findings ofpast assessmentThe population for the other alternativeasassumed

to bemuch largesothat thehistoricalcatchesre well below MSY These population trajecteesprovidecontrast
betweeralternativeperspectives about the status of the s{gagure 2).

3.2 Species distribution model

The SDMused in thisstudyis a detailed model of the fowlimensional distribution of blumarlin (Goodyear
2016) It assumes average spediesnsityis proportional t@veragehabitat valueThe values of H are normalized
so that the sum of the products ofand the habitat layer volumes is always urdtyany point in time.
Oceanographic data and species hahtitization patternare used tdistributethe populationn time andhree
dimensionalspace. The current implementatipartitions the Atlantic fronb0 S to 55 Nlatitude ata spatial
resolutiono f 1 I at i t u dvithd@incrbasihgly ddefayerg from thd surface to a maximum depth
of 1970 m Separate distributionsere computed forhours of daylight and darkness reflect the daynight
redistribution of the speciés the vertical plaa The modelsesbehavioral dat&rom blue marlinPSATtagging,
publishedoxygenrequirementsandthe timevarying distribution of these variables in oceanographic eath
month and yeaiThe oceanographic data wementhlyvalues fronthe Earth System Modé&lom 1%6 to 202
which matched the spatiedsolutionof the SDM and were provided by colleagues at theNd8onal Atlantic
Oceanographic and Meteorological LaboratO®pML). At the time of this study 2012 was the last y&wat
oceanographic data weawailable The 2012valueswere substitutedsneededo provide oceanographic data
through2016 This conventioraccounts fothe large monttio-month variabilityin oceanographic conditions but
omits any effectfrom annual trend¢hat may have been importanttire last few years.

918

tren

val u



Two implementations of th&DM were employed in the analyses héitee baselinevas the model for Atlantic
blue marlin described in Goodyear (2016An alternative was used to explore the sensitivity of GiRUJE
standardizations to error in tB®M predictims. This modesubstitutecatemperatur@reference profilén which

the specieprefershigher temperaturggigure 3). ThisapproacHthe thermophilic SDM#adjused theobserved
PSAT-tag databy the average volume of habitatthin the observed temperaébins (Goodyear 2016)At the
highesttemperatureg>30C) the predicted relative densities are much elevated by the thermophilic model
assumptionHowever thevolumes of ocean strata within the temperature extremesglateely very small. As
aconsegencethepopulationfractiors for the two modelsvithin coolerstraa (below30 C) arenot & different
asmight be inferred fronfrigure 3. Nonethelessthepredicteddensities in ocean strata at the highest temperatures
are much higher than for theseline assumption.

The SDM computes relative blue marlin average densiigat(each of 46 ocean depth layers from the surface
to nearly 2km deptturing hours of darkness and daylightdéachatitude, longitudeyear and monthHn addition

to ther contribution to the estimateswfvaluesof H are potentially usefudovariategor CPUE standardizations
Here wecompiled estimates ofhe daynightaverage in the surface layergftand the daynight average from the
surface to about 100m (kd). Other aggregationsf deptts and weighihgs by time of day would be possible to
best capture fishing patterns and gear configurations.

3.3 Fishery data

In addition to the population time series and SDM dh&Jongline dataimulationsrequireinputsaboutwhere
and when longlines ate befishedandtheconfigurationof thelonglinesto be usedWe selected twéfisherie®

to evaluateThe firstwas based othe US longline fshery because we had detailed information aboug¢laes
used andhe sp#otemporal patterns of deploymenfhe secondi f i s lwas mpattérned after the Japanese
longlineeffort as reported in the ICCAT Task ii data fildhe Japanesdatainclude the earliest years of the blue
marlin fishery and constituthe longest timseriesfor the Atlantic stock.

3.3.1 USishery

Spatiotemporal aspects of the US longline fishery are restricted because of confidentiality agrseone e
data collectedWe creatd ageareffort matrix that describe the fishery and used Monte Bamethodgo create

a data set describingsgntheticfishery closely resembling Ungline fishingpracticesThese data covered the
period 19862015 with 128 discrete gear typ#sat were first usedin a blind study of the performance of
standardizatin methodgForrestal et al. 2017Yhese datavereadopted unchanged for the current stutlye
resulting data fileontainedabout 280 thousand simulatsets.

3.32 Japanesdishery

Information about thdapanese fishery was extracted from the online version of ICCAT Task ii database. These
dataprovide thenumbers hooks fished irf fatitudelongitude squares for the period 195816. This data was
supplemented with information used @arlier simulationsof the Japanese longlines that were developed in
support ofresearch for th&CCAT Methods Working Group (Goodyear 2008his additional informatiorincluded

35 longline configurationdeployedbetween 1956 and 1995 atite number of sets by gear typg year and month
through 1995A central feature of the data was a tréimat increased the proportionsg#ars that fished deeper in the
water column with timeHowever, he underlyingdetail changed markedlyn t h e e.dhelanalysk gefottadl s
in Goodyear (2006) showeddiscontinuity in catchability computed with these dii@ seemed likely an artifact of
the methods used in thedonstruction To avoid the complicating consequences of these featavessimulated
Japanese fishery was consteadrio 3genericgear types: shallogB hbf), intermediat€10 hbf)and deef§24 hbf) These
replacedhe 35 gears in the original files based on the relative deptfisheach geaFor 19561995 the gean the
simulation was selected usitige mean deth of the gearused in the 2006 studiFor yearsprior to 1975 andfter
1995, thenumber of sets in th&° cells were estimated from tihatal number of hook# the Task irecords using
the average number of hooks per Isgthe gear for years wheiehad been usedsear typeafter 1995was
randomly assigned baden the proportionms the 1995 datd&ach set in a%cell in the ICCAT data was randomly
assigned tan includechabitable 1 cell (no land)

3.4 Longline simulations

Longline catchdata were simulatefbr the studyusingLLSIM V2 (Goodyear 2017)The model compusea
probability of catch for each hook on each longline ke probability ishe cumulative sum of the products of
a gear coefficientkK), the density of fish in eaclayer of the water columrandthe duration of time the hook
spends in that layefo account for the dagight vertical movement of the fidomeof the hooksare assumed to
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fish during daylighthoursand the remainder at nighithe proporitons areassigred for each set in an input file.
The probabilityof catchis entered into &onte-Carloprocedure to test for a catoh each hookThe sum of all
outcomes determingle number of fish caught on a set. LLSIM saves datedonsimulated set for subseqie
analysesThere was no additional error added to account for other factors (species misidentification, reporting,
etc.).The value okis an inputto LLSIM andreadas a gear paramet&fariations in the values of &redefined
extrinsically to identify importangear featurethat affect the gear components of catchabilityamples include
such things akook type light sticks, fleet, etcThesevariablesareidentified asimportantgearfeaturedsn the
LLSIM input file andare saved in the output record feachcatch.Each output recortbr a simulatiorprovides
the month, year, latitude, longituddentifiesthe gear anits features, and theumber of fish caught on the set.
Though not employed here, several species candaeled simultaneouslyOur design required minimum of6
simulated longline datasets

1) USfishery, small population and baseli@8®M;

2) USfishery, large population and baseline SDM;

3) USfishery, small population arttiermophilicSDM;

4) USfishery, large population artdermophilicSDM,;

5) Japanese fishery, small population and baseline SDM;
6) Japanese fishery, large population and baseline.SDM

This designis sufficient for gross comparisons bdibes not provide the replication neededcharacterize
precisionof the alternatives

3.5 Data compilation

A pre-processing step is required poeparea catcheffort record from the simulated logbodér use ina
standardizatioprotocol(Figure 4). The simulatedongline CPUElataareset by set observations similar to what
might be obtained from logbook&ach recorddentifiesthe gear, month, year and location (latitude and longitude)
of the set andhe numbers of blue marlin caughithe probability distributionfor the hooks arenput from gear
files. The species relative densiti@d) at the location and time of the set are obtained tleerSDM The value

of w is then computed from the two overlapping distributiddscause of the neaurface habitat and strong
association of ble marlin with tropical conditions, temperature might be expected to be a surroght&Stowe
also compiled the surface layer temperature} éhd the average from the surface to about 100m) (s
potential covariates.

The simulations were done Ht resolution of latitude and longitude. However, the standardizations may be done
at the lower 5° resolutioras may be required for real data such as the Japanese exdmislgeometry is
accommodatelly accumulating th&° observations at the 5° restiin. In this case the temperature &hfields

are the averages valid 1° cells within the 5° output grid and thalues forw are computed from the 5° average
values ofH. Theprogram that does this taskrcsavehe resulset by set to match the inpeetordsAlternatively,

it can pool datdor all sets by each gear in thé& or 5°cell by month.The resulting data filéor the simulated US
fisherywere set by set. The simulated sets for the Japanese fishery were p&be&tto match the resolution

of the ICCAT data.

3.6 Analyses

Several GLM models were fitted to each dataset usintes of potential/ariablesthat were known to be
influential because of their roles in thimulationsThe GL Mé s w e ngehe glumADMBlibr&y(RU s i
Core Team, 2015)There was no attempt to select the variables for each fit based on any perfelbasette
criteriaor make judgments about the quality of the fits to the simulated Tagehabitat coefficientsn, habitat
relative densitiesH), and temperature (Cwereincluded as numerical variabldsactorsincludedyear,month,
thegear (a unique id), hooks between floats (hbf), hook type, bait &ypkthe use of light sticken setsFor
analyses of data patterneitea the distribution of Japanese effort, the set by set data were first pooled to 5°X5°
resolution.Set by set data were used for analyses of the simulations patterned after the US longlineTfighery.
standardizednnual abundance predictioc@mmbinedse p a r a t eor tBd_shtoessful sets and the catch rates
of those that were successful.

Sincek is known for the gear used in the simulations, it is possible to estimate abufatatheesimulated data
using the annual means of tbatch/(effort k*w) without using GLM frameworkThis method was applied to
each datased scan for anomalieend is included for reference, but it is not proffered as a reasahda The
GLM models for the Uhased simulations included:
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1.yearw

2.year,w, gear id

3. year, lightstick, hooktype, baittype, hbf

4. year, lightstick, hooktype, baittype, hiof,

5. year, lightstick, hooktype, baittype, hbfy H

6. year, lightstick, hooktype, baittype, hbf;dbi

7. year, lightstick, hooktype, baittype, hbt T

8. year, lidnhtstick, hooktype, baittype, hbfadh

9. year,month, arealjghtstick, hooktype, baittype, hbf
10.year, month, area, lightstick, hooktype, baittype, tbf,

Each model was applied to eaobmbinationand reciprocal foSDM distributions assumed to be true fbe
population and at the time of analysiable 1).

The GLM models for the simulationssing the distribution of Japanese longline setkided:

1.year,w
2.year, gear igw
3. year, hbf

4. year, hbfw

5. year hbf, Hy

6. year, Hoo

7. year, hbf, §

8. year, hbf, Too

9. year, month, area, hbf
10. year, month, area, hiv¥,

The deterministic abundance estimations possible because k was known reweatedhthd was sensitive to
occasional catches margiral habitat Figure 5), and we chose tmim about 8% of the total Japanese effort that
occurred north of 5N or south of 58S from further analysisThe resulting simulated CPUE data file had about
1.3 million simulated sets between°S0and 50N latitude. No similar adjustment was made for the simulated US
data.

The annual relative abundances fmachstandardizatioomethodwere compared to the true values known from

the simulations. Each series was finstrmalized bydividing by the series meaikrror was quantifiecs the
difference between the predicted dngk values. The sums of squares of these differences was used to compare
the relative accuracy afachstandardization methodgmdto establishranks among thealternativesevaluated.

Note that this usef the sum of squares different than the standard sum of squares because the difference being
squareds measured from the true value rather than a derived stafilsticnotethe Cl intervals for the indices

in theplotsof the standardization resultsthis report are based on thsualfitted statistic§without knowledge

of the true values)

4. Results

Theresults of each of fitting exercises for each of the simulations based on the US longliakflgzesented in
Figures 6-13. Therelative error for each simulation and each standardization method are giahier?, along

with therank of the average for each methdtie ranks of the methods for each combination of simulation
assumption and spes distribution model usetd computew andH arein Table 3. Exceptwhenthe habitat
coefficient was used alone, the standardizations diminished error when compared to the nominal CPUE.
Inspections of the plots figures 6-13 showed that the standardization tended to correct for the downward slope
in the nominal time series that exaggerated the trend in the populdtédecline in abundanegs much larger

for the small population alternativehe pattern in the nominal CBvas an aggregasgfectof the transition of

fishing effortto less favorhle habitabs time passegartly by increasingseof gears that fish deeper in the water
column.

Standardizations using the deterministic calculation basdavamd thatalsoused the correct SDM to estimate

w were both accurate and prec{fanel Aof Figures 6-9 and14-15). Resultswith that approach were degraded
when the choice of SDNbr use in the standardizatiovas in error Figures 10-13, Panel A). Standardizations
that relied on the habitat coefficient alodiel not improve upon the nominal for any situation evaluated here
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(Figures6-15, Panel O, but would be expected to mirror the results of standardizationskygifigwas constant
(e.g., 1 gear)Standardizatins that used only gear featumdso performed poorly with respect to most other
alternatives Tables 23, Figures6-15).

The best standardizations accompanied habitat coefBgeaired withfactorsthat identified the particular gears

or also included factors for area and mowith w (Tables 23; Figures 6-15, Panel Band K; andFigures 14-

15, Panel B). This might be a result of partitioning the data in such a manner th@tltfleis able toprecisely
isolate theeffectsof thedifferentgeas. Theincrease@ccuracy seems to come at a cost of the estimated precision
of the indexForthe USbased datancluding the geaid added 131 factorand increased the Cl beyond the scale
of the plots(Figures 6-13, Panel B). Other standardizationalso showthat the CV of theestimatesis not
informativeaboutaccuracyof theindex(e.g.,Figures 6-15, Panel Q.

For the USbased datasetthereduction in the S&veragedibout81% wrenw andgear idwere covariateand
alsowhenw andthe gear and habitdactors wereused(Table 2). Standardizationthat applied other covariates
whichincludedcontinuous variabledHor T) withthe habitat factor@~igures 6-13, Panels El) reducedhetotal
SShy an average dfetween aboufO to 76% The traditional approach using only factors to represent habitat
variability decreased the SS by 72%dures 6-13, PanelJ; Table 3). The individual results within thahatrix

did notpoint to a clearly superior methoBables 2 and 3. On average, thanalyses using SDMased covariates
resulted in larger errors (SS = 1.13 vs 1.4®).03, 27 df) when they were incorrectly paired with the distribution
of the population. However, the differences waraller tharthe range of errors from standardizatitimest used
traditional montkarea factors.

In contrast, thestandardizationsf simulationdatabased on the distribution of Japanese eff@nte substantially
improved by the inclusion of SDMased covariate$-igures 14-15, Table 4). Each methodthatincluded gear
information as well asv reduced SS by 998% compared to an average5dfb (11-61%)where intraannual
variability was modeled with factors for month and gfEable 4). Analyses that includeH or temperature as
covariatesvere able toeducethe SS by an average &3-98% (Table 4.) Inspections of the trends kKigures 14

and 15 suggest thathe SDMsupported standardizations captured the true trend of the population much better
than the factebased analyses, particularly when the paipon haddeclinedsubstantiallyduring the period.

5. Discussion

Compared tonodels that use factors for area and mohthaccuracy of CPUE standardizations for the Japanese
based simulated longline catch data were substantially improveldMydg&rived covariate§Table 4). The most
accuratgesults were obtained when the gear was identified by géar lidbf which was uniqufor eachthe gear
type forour simulatedlapanese dgtalemperaturevasagoodsurrogate for habitatlative densityThe average
value in the first 100m of depfor both variableoutperformed the values at the surfaliee relative accuracy

of standardizationef the catch data from the ti#&sed simulationseresimilar, but the differences arising from
the use of SM-derived dat@ar temperaturgvereless profound. We also noted that the results were accurate
when the SDM used to create the variablef w) matched the populatiamsed to simulate the catddowever,

the differencewerenot great.

Our resultssuggest that temperature is a useful covaftatetandardizing CPURhen included as a continuous
numeric variableWhen emperaturevas used asa surrogate foH, it was predictive for both the U%nd
Japanesb&ased datasefbhis is noteworthy becaustis not a linear function démperaturéut sharply increases
in therange ofpreferred temperatureshat suggestshe GLMs werecapable otaking advantage ofhatever
empiricalassociations existl in the data, even when fla@ctionmaydepart consierably from truthThe habitat
densitieg(H) predicted bythe baseline and thermophilicodelsused heraredifferent butsimilarly correlated
more so for most of the range of temperatures that constitute large ocean volimaefeature would also be
true of other SDM parameterizations that preserve the blue marlin habitat patterns observed elsewhere (e.g.,
Goodyear 2003, Prince and Goodyear 2006, 2@@adyearet al. 2008, Prince et.al 2010)Consequently, it
seems likely thaan SDM that satisfiegeasonably establishepialitative andjuantitativecriteriawill provide
estimates of that will outperform habitat factoidepending ortircumstanceabout factor balancédditional
evaluations of simulatl data could clarify this question.
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The catch on any set is proportionalkteN, and so the value of N can be estimated from averdge €o6r a
single geak is constant, ands is estimable from features of the gear and species distribiftiors known and

w is correctthe estimator isccurateBut for small sample sizethe estimates can be very imprecise. Catches
are integer values amdis a very small real number This causes individual estimates of abundances to be either
zero or very high whenever a fish is actually caught. Bietirequires a large sample size whenever marginal
habitat is includedThis situation is particularly problematic if the data are pooled such that catch/hemken
cells are estimatedith very few setsThis was theproblemthat led to themid-1970s variability in estimated
abundances in Figure Bhe same phenomenon was postulated as a reasotnehktandardizations explored in

a former studywere less than satisfacto(goodyear and Bigelow 2012 is unclear how this noise would
propajate intoa typical standardization problem, lihts approactcould provide a means twlentify outlying
strata.

The results here provide examples of why goodness of fit criteria ambvaytsreliable indicators of the accuracy

of the resultsAccurateresults for the US simulatiorvgere obtainedor a highly overparameterized modbkéht

included a factor for each gear, but the confidence in the estimates was véyloiigures 6-13, Panel O. In
contrast,for other models relatively narrowCV estimated fothe index wasnisleading(e.g., Figures 6-15,

Panel Q. This feature exemplifiea pervasiveproblem even thougliR? reflects confidence in the fitted parameter
valuesiit is notnecessarila reliable indicatoof model accuracyParametes aresele¢edfor inclusionbased on

these criteria, and the resulting time series are sometimes weightiee tasiduals. Ipractice it is probably
impossible tagnore the Cl when choosing@angststandardizatioalternatives in a stock assessment atmosphere.

This issue is amenable to investigation through the analysis of simulated data where the results can be contrasted
with true values.

We did notattempt to refine each model to include the best set of paesfmteach realized dataset within our
dataseimethod stra Consequently, dtterfits could have been obtainéitat mayhaveaffectourresults Also,

we did not address possible issues with the appropriatenessaifles that reflect some of thense information
(e.g. factors area and month together with a Si¥vlved variable)Additional simulations could provide more
material for study, buhe simulations already availalitan be usetb investigate many questions not evaluated
here. Examplesnclude different methods for formulating GLMs with the same basic data, or different
standardization paradigms altogethé/e did notexaminedifferent methods fopooling data ab°x5° vs. 1°x1°

that might be important for understandithg strengths anliabilities of the ICCAT taski data. The computer
programs that implement the models used in this study are designed to accommodate multiple situations and can
be readily adaptedby only changing input data fileS'hese can involve additional simulation studies or
applications of the SDMlerived variable$o standardize abundance indices fractual fisheriesBased on our
results it might be profitable to apply #emethod to the Japanese longline datssiffficient information is
available about the gears us&tis hasdone infor the US longline logbooks (Goodyear et al. 2018)
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Table 1. Acronyms used to identify simulatieneatment combinationfer analyses of simulated longline data
based on patterns of fishing effort by the US fishery

Species distribution assumption

Acronym Population Analysis Populationsize
BBL Baseline Baseline Large
BBS Baseline Baseline Small
TTL Thermophilic Thermophilic Large
TTS Thermophilic Thermophilic Small
BTL Baseline Thermophilic Large
BTS Baseline Thermophilic Small
TBL Thermophilic Baseline Large
TBS Thermophilic Baseline Small

Table 2. Errors in indices of abundance from standardizatiorsmélated US longlin€PUE with alternative
treatments of habitat data in GLMs. The errors were the sums of squares of the differences between annual and
true abundance, both normalized to the series mean. The column labeled nominal was thdi avdregeed 0
CPUE. The other columman be identifie@s follows:w includesvalues standardized with the habitat coeffigient

Giq includes dactor identifying the unique gear; @Bcludes gear factodgyhtstick, hooktype, baittype and hpf

Ho includes &SDM-derivednumeric covariate for averagarface daynighthabitat densityiHigoincludes &SDM-
derivednumeric covariate for dagight average habitat densftpm the surface to 100nT, includes a numeric
variablefor the surface temperature)); Tioo includes a numeric variable for the average temperature from the
surface to 100mandHs includes factorgor month and ICCAT billfish aredalhe data sources correspond to the
acronyms in Table 1.

Covariate method
W+Gr Gr+Ho GrtHioo G+ To Gi+T100 Gr+Hr WHGr+Hs

Data Nominalw+Gy w G

BBL 6.044 0.27€4.9921.2811.71¢ 1.76¢ 2.06€ 0.93z 1.13% 0.31C 0.87¢
BBS 5.207 0.47(7.2551.4270.601 0.94¢ 0.92C 0.51£ 0.44Z 0.34C 0.17¢
TTL  5.43¢ 0.72(8.46€ 2.43€ 1.45z 1.13¢ 1.404 1.50z 1.717 2.057 0.617
TTS 3.05z 1.1029.6521.91€1.06z 1.23% 1.22€ 1.804 1.96(C 2.794 2.36¢€
BTL 6.04¢ 0.40:6.4021.2811.741 1.51€ 1.62¢ 0.93z 1.13Z 0.31C 0.427
BTS 5.207 1.35€6.00€ 1.4271.511 1.42C 1.44% 0.51t 0.44Z 0.34C 0.27¢
TBL 5.43: 1.5474.7012.43€1.37¢ 1.11z 1.48€ 1.50z 1.717 2.057 0.87C
TBS 3.05z 1.46£6.2321.91€1.89¢ 1.864 1.61Z 1.804 1.96C 2.794 1.621
Mear 4.934 0.9176.7121.765£1.42C 1.37¢ 1.4741.18¢ 1.31: 1.37¢ 0.904

Rank 2 10 9 7 5 8 3 4 5 1
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Table 3. Ranks of erors in indices of abundance from standardizationsirafilated US longline CPURith
alternative treatments of habitat data in GLiMg able 2 Lower values indicate better correspondence between
average

true and estimated abundanc&he column labeled nominal a s
columns can be identified as follows:includes values standardized with the habitat coefficientjn@udes a
factor identifying the unique gear; @cludes gear factoightstick, hooktype, baittype and hbHo includes a
SDM-derived numeric covariate for averagerface daynight habitat densityHig includes a SDMlerived
numeric covariate for dagight average habitat density from the surface to 10@nmcludes a numeric variable

t he

fobser vedo

for the surface tengrature {C); and Toincludes a numeric variable for the average temperature from the surface
to 100m.The data sources correspond to the acronyms in Table 1.

Covariate method

Data wW+Gg W G w+G; Gi+Hg Gi+Higg Gi+To Gi+Tig0 Gi+Hi w+Ge+Hs

BBL 1 106 7 8 9 4 5 2 3
BBS 4 109 6 8 7 5 3 2 1
TTL 2 109 5 3 4 6 7 8 1
TTS 2 106 1 4 3 5 7 9 8
BTL 2 106 9 7 8 4 5 1 3
BTS 5 107 9 6 8 4 3 2 1
TBL 6 109 3 2 4 5 7 8 1
TBS 1 107 6 5 2 4 8 9 3
Mean 2 109 7 5 6 3 8 4 1

Table 4. Errors in indices of abundance from standardizations of longline Gitdilated using the pattern of

effort in the Japanese fishefiyh e ¢ o |

can be identified as followsv includes valus standardized with the habitat coefficientjq iBcludes a factor
identifying the unique gear;:@cludesonly hbf ; Ho includes aSDM-derived numeric covariate for average
surface daynight habitat densityiH100 includes a SDMlerived numeric covariater day-night average habitat

umn

|l abel ed

n o mi

nal

wa s

t he

density from the surface to 100m; ihcludes a numeric variable for the surface temperafi@® @nd Too

includes a numeric variable for the average temperature from the surface t@hé@wolumrabeledkw contains
mears ofabundancesingthe product of w andear coefficientshatare notpossible with real datdBL denotes

averag

Japanese, baseline SDIsInd large population assumptialBS denotes Japanese, baseline SDM, and small

population assumption.

Error
Data
Method JBL JBS Mean Rank
Nominal 20.41 79.72 50.07 Data
kw 0.06 0.07 0.06 JBL JBS All
wWHGig 0.48 1.20 0.84 2 4 1
w 5.83 14.26 10.05 8 8 7
Gt 18.43 29.65 24.04 10 9 8
WG 0.48 1.20 0.84 2 4 1
Gi+Ho 3.88 7.12 5.50 7 7 6
Gi+Hioo 0.75 1.20 0.98 5 2 3
Gi+To 3.32 6.68 5.00 6 6 4
Gi+T100 0.71 1.17 0.94 4 1 5
G+Hs 18.17 30.77 24.47 9 10 9
W+Gr+Hs 0.62 1.23 0.92 3 5 2
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Figure 1. Observed and simulated catches for the population trend used in the simulations.
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Figure 2. Population trajectories used in the longline data simulations
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GLM data record

SDM,
Gear &
CPUE

Gear file SDM
month, year, lat, lon, gear, gl...g4, hbf, T}, 7', H, 1,0, W, hooks, catch
\ ) S

|

CPUE file Environmental data

Figure 4. Content of data records used as input for analysis using a GLM and source of data for each field. The
catch, effort (number of hooks), month, year and location are extracted from a source of catch and effort
information. Matching gear related data (ggdrand hbf [hooks between floats]) are included from a source of
gear information. Temperature at the surfagetfie SST) and the average temperature from the surface to 100m
(T100) are obtained from a source of environmental data. The value of thet laaltita surface, ¢1and from the

surface to 100m (o) are computed using a Species Distribution Model (SDM) using important habitat variables.
The habitat coefficient, w, is computed from gear characteristics and environmental data using the SBM for th
time and place specified for the catch in the CPUE file.
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Figure 5. Determiristic estimates of population size from the longline catches simulated using the distribution of
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at I° or 5° spatial resolution for the region 50S to 50N (trim) or 50S to 55N (Full).
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for blue marlin. The simulations assumed the large population option and the baseline distribution pattern.
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Figure 7. True ppulation trencand abundance indices from various treatmenginadilated US longline catches

for blue marlin. The simulations assumed the small population option and the baseline distribution pattern.
Analyses assumed the baseline distribution. The nominal and determinist estimates are in panel A. Other panels
apply \arious combinations of factors and numerical variables in aked standardizations as indicated.
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Figure 9. True ppulation trencand abundance indices from various treatments of simulated US longline catches
for blue marlin. The simulations assumed the small population option and the thermophilic distribution pattern.
Analyses assumed the thermophilic distribution. The nominaldaterminist estimates are in panel A. Other
panels apply various combinations of factors and numerical variables inlfak®tl standardizations as indicated.
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Figure 10. True ppulation trendind abundance indices from various treatments of simulatéohdhe catches

for blue marlin. The simulations assumed the large population option and the baseline distribution pattern.
Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel A. Other
panels apply various otbinations of factors and numerical variables in Gh#dsed standardizations as indicated.
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Figure 11.True population trend and abundance indices from various treatments of simulated US longline catches
for blue marlin. The simulations assumed the srpafulation option and the baseline distribution pattern.
Analyses assumed the thermophilic distribution. The nominal and determinist estimates are in panel A. Other
panels apply various combinations of factors and numerical variables irlfakdtl standarzitions as indicated.
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